
3
Configuration Space

In Ch. 1.1, we introduced the configuration space, C-space, and
workspace mainly for point robots. In this chapter, we explain their
main concepts and various issues, since the C-space is one of main
components of most planners.

The C-space represents all the parameter spaces of a robot. As
a result, a configuration in the C-space is a complete specification
of every points of the robot. For rigid robots, dimensions of the
C-space commonly correspond to set of positions and orientations
of the robots. Since the robot is rigid, we do not need to explicitly
represent its shape. In other words, once we specify the position
and orientation of the robot, we can represent its every point in the
workspace by placing its rigid shape that is transformed with the
specified position and orientation.

Fig. 3.1 shows a manipulator that is fixed to the ground and has
two joints. Since the manipulator is a rigid robot with two joints,
we can specify its complete shape based on those two joints, θ1

and θ2. Typically, we concern a position of the end-effector of the
manipulator. Once we specify certain values on those two joints, we
can compute the exact location of the end effector. Computing such
locations and orientations given joint angles is known as forward
kinematics. On the other hand, computing joint angles given an
end-effector pose is inverse kinematics. Specifying a position of a robot in

the workspace can have multiple
corresponding configurations in the
C-space, resulting in ambiguous
representation.

One may consider to use the end-effector position in the workspace
as an internal representation for controlling the robot. This could be
an intuitive approach, but poses ambiguous representations. For
example, given an end-effector position, the blue ball in the right
figure of Fig. 3.1, there could be multiple combinations of joint angles,
realizing the same end-effector position. Since using the end-effector
position in the workspace can be ambiguous in terms of specifying
joint angles of the manipulator, it is not desirable for controlling the
manipulator and many other planning problems.

20 motion planning

36

End-effector
Figure 3.1: The left figure
shows a manipulator with
two joints, and the right fig-
ure shows that there could be
multiple joint configurations
whose end-effector is located
at the same position in the 2D
workspace.

Dimension of C-space. There can be different ways of specifying
parameters for controlling a robot. Nonetheless, the dimension of
the C-space is defined to have the minimum number of parameters
needed to specify the robot completely. At this case, the minimum
dimension is also called the number of degrees of freedom (DoFs) of
the robot. While we can use different parameters

for representing C-space of a robot,
its degrees of freedom (DoFs) are not
changed.

Suppose a 2D robot that we can change its position, (x, y), and its
orientation, θ. In this case, the number of DoFs of the robot is two.
Instead of this representation, we can specify the orientation by a
point, (u, v), in a unit circle, where u2 + v2 = 1, and u = cos θ, v =

sin θ. While we use four parameters, (x, y, u, v) for the position and
orientation of the robot, the number of DoFs cannot be changed and
thus still is two. Intuitively speaking, the DoF of a robot does not
depend on its parametrization.

3.1 Constraints

There can be many types of constraints on paths that we need to
compute for maneuvering robots. At a high level, these constraints
can be classified as the following:

• Local constraint. Local constraints are related to ones that require
only local information to satisfy them. The most common one is to
avoid collision that requires to check whether we have collisions
between the robot and its local neighboring region.

• Global constraint. Computing a path with a minimum distance
requires global information along the path and explores various
regions of workspace and C-space. Satisfying such a global con-
straint tends to require higher computational cost than that of local
constraint.

• Holonomic constraint. Holonomic constraint has the following
relationship between the motion of a robot, (q1, q2, · · ·), and the
time t:

f (q1, q2, · · · , t) = 0. (3.1)

configuration space 21

An example is a particle moving along a surface or a simple
pendulum.

• Non-holonomic constraint. Non-holonomic constraints have the
following relationship:

f (q1, q2, · · · , q′1, q′2, · · · , t) = 0, (3.2)

where q′1, q2, · · · are the first derivative, i.e., velocity, along q1, q2, · · · .
An example of this non-holonomic constraint is related to describ-
ing the motion of a kinematic car model that is restricted due to its
kinematics, i.e., shape, of the car without considering any force on
the car (Ch. 3.1.1). Handling non-holonomic constraints requires
us to deal with the first derivatives of coordinates of robots. To do
that, we commonly extend our C-space to include positions and
velocity of the robot, resulting in a higher space and thus higher
complexity.

• Dynamic constraint. Dynamic constraints has the following form:

f (q1, · · · , q′1, · · · , q′′1 , · · · t) = 0, (3.3)

where q′′1 , · · · are the second derivative to q1, · · · of the robot.
These dynamic constraints can be reduced to the non-holonomic
ones by using state space (Ch. ?? YOON: fix). An example of dy-
namic constraints is planning quadruped robots while considering
various forces (e.g., gravity and repulsion force from each foot of
the robot).

3.1.1 Kinematic Car Model

In this section, we study a simple car model considering a basic
kinematic structure of the car model. Fig. 3.2 shows such a simple 2D
model. The C-space of the car model is (x, y, θ, v), where x, y, θ are 2D
positions of the reference point of the car and its orientation angle. v
is the velocity of the car. In this case, we have two control parameters
v and a steering angle φ.

Our goal is to derive its motion equation. Given its orientation
angle θ, we have the following equations:

tan(θ) =
sin(θ)
cos(θ)

=
dy
dx

,

sin(θ)dx− cos(θ)dy = 0, (3.4)

where (dx, dy) is the differential changes along X and Y directions.
This is an implicit equation that belongs to the category of the non-
holonomic constraint.

22 motion planning

33

Example of Non-Holonomic
Constraints

Orientation

Steering dir.

Slip angle
Figure 3.2: The left figure
shows a simple, kinematic car
model. The right image illus-
trates the slip angle made by
the angle between the steer-
ing direction and the heading
direction of the car.

While the implicit equation is useful, it does not directly predict
how the configuration of the car changes depending on our input
changes v and φ. The differential units for x and y are computed as
the following:

x′ =
dx
dt

= v cos(θ),

y′ =
dy
dt

= v sin(θ). (3.5)

Let’s consider the angular velocity, the velocity change rate per
unit time, θ′. According to the definition of the solid angle, we have
the following equation:

w
r
= θ → dw

r
= dθ, (3.6)

tan φ =
L
r

, (3.7)

where w is the traveled distance of the car, and r is the distance from
the rotation center of the car to the reference point of the car. By
merging these two equations, we get the following equation:

dθ =
dw
L

tan φ,

θ′ =
dθ

dt
=

v
L

tan φ. (3.8)

Note that x′, y′, θ′ are explicit equations, where we know their
differential values given a control (e.g., steering angle φ). We later see
how they are used for motion planning algorithms (Ch. ?? YOON: Fix
).

Extensions. The aforementioned simple car considers only the
kinematics of the car, not skidding occurring when turning at a high
speed nor the slip angle. For example, when we do not consider the
slip angle, we can have understeering, the car does not steer much as
we requested, or oversteering. As a result, the simple model works
well only with low speed. When we use this simple model for such

configuration space 23

𝜽 = 𝟎

Workspace C-space

𝜽 = 𝟑𝟎

Obstacle

Figure 3.3: At the top row, we
show a triangular robot (or-
ange color) whose orientation
is set to 0 and reference point
is shown red dot filled with
the orange color. In the mid-
dle, we show a few samples
of robot positions that touch
with the rectangular obstacle
(black color). Blue lines are the
trajectory of the reference point;
we basically roll the robot while
touching the obstacle. In the
right, we show the C-obstacle
space (blue region) in C-space.
At the bottom row, we show
similar information, but with
a different orientation of the
robot.

high speed cases, our low-level controller find that there are large
gaps between a planned path and an actual trajectory made by the
car, which may cause collisions. A car model considering the slip
angle 1 and other complex models are also available. 1 R. Pepy, A. Lambert, and H. Mounier.

Path planning using a dynamic vehicle
model. In Int. Conf. on Information
Communication Technologies, 20063.2 Construction of C-Obstacle

So far, we discussed C-space with its free space and obstacle space.
One can think of that if we can exactly construct the boundary of the
obstacle space, i.e., C-Obstacle, we can conduct the collision detection
efficiently and perform planning efficiently. This line of research
was conduced early in the field of motion planning, and later it
turned out that exactly computing free or obstacle spaces requires an
exponential time complexity as a function of dimensions of C-space.
While exactly computing such spaces is not widely attempted in
these days, some of these discussions are useful for understanding
the computational challenges of motion planning.

We first discuss how to construct the C-obstacle in a simple set-
ting with a 2D obstacle and 2D robot, as shown in Fig. 3.3. In this
example, we use a triangular shape robot (orange) and rectangular
obstacle (black). We assume that we can translate and rotate the
robot. As a result, its C-space is 3D.

To simplify our discussion, we first suppose that the robot’s ori-
entation is fixed to 0, resulting in its C-space 2D, and the reference
point of the robot is defined at one of its vertices. To see how the
C-obstacle space looks like, we need to see cases of robots that touch

24 motion planning

45

Polygonal Robot Translating &
Rotating in 2-D Workspace

𝜽 ൌ 𝟎

𝜽 𝒚

𝒙

…

𝜽 ൌ 𝟑𝟎

3D C-space

Figure 3.4: We visualize the 3D
C-space how the space changes
as a function of the orientation
of the robot shown in Fig. 3.3.

 22

Minkowski Sum Algorithm

Adapted by wiki

Figure 3.5: The rightmost
polygon is A ⊕ B given two
triangles of A and B. The image
is adopted from wiki.

or collide with the C-obstacle. One simple method is to simply roll
move the robot while it maintains the contact with the obstacle. At
that case, the trajectory of the reference point of the robot (shown in
blue line) is the boundary of the C-obstacle space. At the right side
of Fig. 3.3, we show the C-obstacle space (blue region) at the chosen
orientation angle.

When we change the orientation, e.g., 30 degree, as shown in
the bottom side of Fig. 3.3, we have a different shape of C-obstacle
space within the C-space. Now, when we consider the whole C-space
consisting of 3D space including the orientation of the robot, we can
easily that the shape of C-obstacle is very complicated.

It has been identified that we can construct such C-obstacle space
out of a convex polygonal robot and a convex polygonal obstacle by
utilizing Minkowski sum. The Minkowski sum between two sets of
vectors, P and Q, is defined as the following:

P⊕Q = {p + q|p ∈ P, q ∈ Q}. (3.9)

For example, let P and Q two sets of vertices of two triangles: e.g.,
P = {(0, 0), (1, 1), (1,−1)} and Q = {(0, 1), (0,−1), (1, 0)}. Then, P⊕
Q = {(0, 1), (0,−1), (1, 0), (1, 2), (1, 0), (2, 1), (1, 0), (1,−2), (2,−1), }.
If we interpret elements of P ⊕ Q as vertices of a polygon, the
Minkowski sum of two triangles, i.e., polygons, is shown in Fig. 3.5.
From this example, we can see that when P and Q have n and m ver-
tices of two polygons, P⊕Q has n + m vertices, which are computed
by summing those vertices of P and Q.

configuration space 25

Similarly, we can define the Minkowski difference between two
sets as the following:

P	Q = {p− q|p ∈ P, q ∈ Q}
= P⊕−Q. (3.10)

12

Observation
● Suppose P is an obstacle in the workspace

and M is a moving object
● Then the C-obstacle is P –M

P
M

o

p

m

Figure 3.6: This show that
C-obstacle is computed by the
Minkowski difference between
the obstcle P and the robot M.

Now, we would like to show that C-obstacle is computed by the
Minkowski sum or difference. Fig. 3.6 shows the boundary of C-
obstacle given the robot M and the obstacle P. In this example, we
place the robot in a location where it has a collision with the obstacle.
The translation amount for the robot in this 2D case is the particular
position in the C-space, especially C-obstacle, of the robot. That
amount is computed by adding the obstacle point p and −m, where
m is the vector to the collision point from the robot origin. This
simple example illustrates that the C-obstacle is computed by P	M. C-obstacle is computed by Minkowski

difference between the obstacles and
the robot.

We have came to know that we can compute the boundary of C-
obstacle by using the Minkowski difference. Unfortunately, its time
complexity is prohibitive high and thus we cannot use for real-time
robotics. For non-convex objects that are common in practice, the
Minkowski sum has the time complexity of O(n6), where n is the
number of features in each object, e.g., vertices. Fig. 3.7 shows an
example of computing the Minkowski sum between two non-convex
objects; the image is excerpted from 2. 2 G. Varadhan and D. Manocha. Accu-

rate minkowski sum approximation of
polyhedral models. In Pacific Conference
on Computer Graphics and Applications,
pages 392–401, 2004

3.3 Paths

Motion planners can compute paths or trajectories. Paths include
geometric paths like line segments or a continuous curve that con-
nects two points without having collisions. On the other hand, the
trajectory is a path parametrized path, and thus is associated with
various concepts like velocity.

While exploring various paths, it is important to find a path that is
novel to already found ones. In this regard, the homotopy concept is
important. We say that two paths, τ and τ′, with the same end points
are homotpic, if one can be continuously deformed into the other:

h : U × [0, 1]→ V, (3.11)

where h(s, 0) = τ(s) and h(s, 1) = τ′(s). A homotopic class of paths
contains all the paths that are homotopic to another. Later, we will
discuss optimal planners, and these optimal planners can explore
different homotopic classes of paths.

26 motion planning

Grate 1 (444 tris)

Grate 2 (1, 134 tris)
Grate 1⊕ Grate 2 (Union of66, 667 prims,358K tris)

Figure 6. The left figure show two grates with444 and 1, 134 triangles respectively. We decomposed them into163 and 409
convex pieces respectively and computed the pairwise Minkowski sums between the convex pieces. The final Minkowski sum is given
by the union of66, 667 pairwise Minkowski sums. Our approximation algorithm computed an approximation (shown in the right)
in 3, 162 secs (52 minutes). It was able to reconstruct the complex features present on the boundary.

Figure 7. The histogram shows the number of voxels in
our adaptive voxel grid for different benchmarks. It high-
lights the number of voxels at each level of subdivision.

sums) are touching tangentially. One way of resolving this
problem is by choosing an alternative way of subdividing
the grid cells (instead of octree subdivision). We are ex-
ploring this alternative in our ongoing work [32].

The main bottleneck in our approach is the convex de-
composition method. Typically, it producesO(n) convex
pieces. Given two polyhedra each withn triangles, we usu-
ally obtainO(n2) pairwise convex Minkowski sums whose
union needs to be computed. Since this set of pairwise con-
vex Minkowski sums is an input to our approximation al-

gorithm, its large size impacts the performance of the over-
all algorithm. Although our algorithm is able to approxi-
mate their union much faster and robustly compared to ex-
act union algorithms, it still needs to pay the penalty for the
large input size. It takes few minutes to compute Minkowski
sums of models composed of hundreds of triangles. Using a
better convex decomposition method can alleviate this prob-
lem.

8 Conclusion and Future Work
We have presented an algorithm to approximate the 3D
Minkowski sum of polyhedral objects. Our algorithm guar-
antees that the approximation has the correct topology and
provides two-sided Hausdorff distance bounds on the ap-
proximation. We employ cell and primitive culling tech-
niques to improve the performance of our algorithm. We
have applied our algorithm to offset computation, morpho-
logical operations, and penetration depth computation of
complex polyhedral models. We have also used it for ex-
act motion planning with translational degrees of freedom.

As part of future work, we would like to improve our
sampling algorithm to make it less conservative and thereby
improve its performance. We would like to use better con-
vex decomposition algorithms. It is well-known that the
Minkowski sum of two star-shaped polyhedra is a star-
shaped polyhedra. We could exploit this property and de-
sign our overall approach based on star-shaped decomposi-
tion instead of convex decomposition. The main advantage

Page 9 of 10

Figure 3.7: This shows an
example of performing the
Minkowski sum between two
non-convex objects. The image
is excerpted from the work of
Varadhan et al.

