
2
Local Image Descriptors

One can use raw RGB data of images directly for image matching or
other applications. Unfortunately, those raw RGB data can vary sig-
nificantly depending on various factors such as illumination changes.
In general, we would like to identify robust features (e.g., points
or image regions) that are invariant under various transformation
including illumination and camera viewpoint changes. Once we
identify such robust features, we can search similar images based on
those features. Some of well known transformation include occlu- Identifying robust features under

various changes is the key component
of image search and many computer
vision tasks.

sion with other objects, articulation of parts of objects, intra-category
variations, geometric transformation (e.g., projective transformation),
and photometric transformations.

Image descriptors are classified into global or local ones. Global
descriptors represent the overall information contained in the im-
age, while local ones encode local information of the image. In this
chapter, we mainly discuss local descriptors that are manually de-
signed for achieving our goal of identifying robust features. The
main reason why we talk about such manually designed ones is to
understand various factors that are important for constructing ro-
bust features. These factors will be utilized for deep learning based
features that will be discussed later. Also, note that techniques for
computing local descriptors can be applied even to global descrip-
tors.

Image descriptors should be repeatable under those various trans-
formation and satisfy the following characteristics:

1. Locality. Features should be extracted by using local informa-
tion for gaining robustness against occlusion and clutters of the
environment.

2. Quantity. There should be a sufficient number of features to cover
interesting regions of an object. By having many features, we can
more robustly detect similar objects.

18 image search

Figure 2.1: From left, input images,
response values of the Harris corner
detector, and computed corner points
are shown. Courtesy of Frolova’s slides.

3. Efficiency. These features should be extracted in a real-time for
various applications.

Many techniques have been developed as candidates for those
features, and serve as basic building blocks for various computer
vision applications as well as image search.

2.1 Corners as Keypoints

One can easily recognize that corners are interesting and robust
features that exist even after various transformations. Furthermore,
when people are asked to identify corners of objects in an image,
there is a high probability that those identified corners are covered by
many different people. This intuitively suggests that corners can be
repeatable and robust features that can be used for image matching.
Fig. 2.1 shows detected corner points of two images that are rotated
each other with different illumination levels. In this section, we
discuss corners as useful keypoints of images.

Corners can be identified by looking at signal changes in the 2D
image space among many other alternatives. In this section, we
discuss the Harris corner detector 1 that detects corners reasonably 1 Chris Harris and Mike Stephens. A

combined corner and edge detector.
In Alvey vision conference, volume 15,
page 50, 1988

well. The Harris corner detector is very popular thanks to its strong
invariance to rotation and illumination changes.

To detect corners as features, we look at changes of intensity of an
image along a shift, (u, v), in X and Y directions. Its change, E(u, v),
is then defined as the following:

E(u, v) = ∑
(x,y)∈P

w(x, y) (I(x + u, y + v)− I(x, y))2 , (2.1)

where P indicates a set of all the possible image patches, each of
which is associated with a weight map, w(x, y). The weight can be
set as a binary function (e.g, 1 within the window and 0 otherwise)
or set as a Gaussian function. E(u, v) is also known as the auto-
correlation function.

The image function I(x + u, y + u) within a small window size
can be approximated as I(x, y) +∇I(x, y)(u, v) based on the Taylor

local image descriptors 19

Figure 2.2: Ix , Iy, Ix Iy are shown given
an example image. Excerpted from
Szeliski’s slides.

expansion, where ∇I(x, y) = (∂I
∂x , ∂I

∂y). After applying the Taylor
expansion to Eq. 2.1, we get the following approximation in a matrix
format:

E(u, v) ≈
[

u v
]

M

[
u
v

]
, (2.2)

where the matrix M is defined as:

M = ∑
(x,y)∈P

[
I2
x Ix Iy

Ix Iy I2
y

]
, (2.3)

where Ix and Iy are partial gradients along X and Y image directions,
respectively. The matrix M is also known as the second moment
matrix.

What information does the matrix tell us? Different quantities of
the matrix M given an image is shown in Fig. 2.2. For an axis-aligned
corner, either one of Ix or Iy is computed as zero along their vertical
and horizontal edges. As a result, M has the following values for the
axis-aligned corner:

M =

[
λ1 0
0 λ2

]
. (2.4)

As a result, to detect corners, we look for regions that have large
values for λ1 and λ2. This procedure works for the axis-aligned
corners, but how about rotated corners? For those rotated corners, we
use the same matrix representation with a rotation matrix, R:

M = R−1

[
λ1 0
0 λ2

]
R. (2.5)

Still, the matrix of rotated corners has the same form to that of axis-
aligned corners, when we take out the rotation part. As a result,
analyzing this form with λ1 and λ2 is useful for identifying corners.
In general, these λ1 and λ2 correspond to principal curvatures, i.e.,
eigenvalues, of image gradients.

Given this information, the following three cases are possible
(Fig. 2.3):

20 image search

Figure 2.3: The left figure (Courtesy
of Grauman’s slides) shows different
regions depending on eigenvalues of
the second moment matrix, while the
right one shows the response function
of the Harris corner detector; Courtesy
of the original harris corner detection
paper.

1. Edges. Either one of eigenvalues are much bigger than the others.
This indicates that the region in the window has an edge.

2. Corners. Both eigenvalues are big. As a result, any changes in
this region drastically decrease the autocorrelation function. This
indicates a corner in the region.

3. Flat regions. When both eigenvalues are small, this region is
flat and does not cause much changes irrespective of any shift
directions (u, v).

Computing eigenvalues of the matrix M is expensive. Fortunately,
the sum and product of eigenvalues can be efficiently computed
based on the trace and determinant of the matrix M (Ch. 26):

tr(M) = ∑
i

λi, (2.6)

det(M) = ∏
i

λi. (2.7)

By utilizing this fact, we define the following response function, R,
for identifying corners:

R = det(M)− αtr(M)2 = λ1λ2 − α(λ + λ)2, (2.8)

where α is shown empirically as 0.04 to 0.06. The response function
R then has positive isovalues roughly corresponding to those corner
regions (Fig. 2.3). On the other hand, the response function R gets
to negative values on flat and edge regions. In other words, this
response function is designed to behave like this. Another approach
for designing alternative response function is a data-drive approach
by using recent deep learning approaches. Note that the response
function R is evaluated with a few arithmetic operations and thus it
is efficient. Corner points are defined as pixels

with locally maximum response values.
This is also known as non-maximum
suppression.

The next step is to compute corner points that have highest re-
sponse values. We can pick a pixel with the highest response value,

local image descriptors 21

but it can detect only a corner. The common approach for detecting
many corner points is to find pixels that have locally maximum re-
sponse values. To do that, we typically introduce a local window and
identify a pixel with the highest response value within that local win-
dow. This is also known as non-maximum suppression, i.e., filtering
out pixels that do not have non-maximum values. In summary, given
the response values over the image, we identify pixels with locally
maximum values, and treat them as corner points. Identified corners
in an example image is shown in Fig. 2.1.

The Harris corner detector is rotation-invariant, but it is not scale
invariant, since depending on the resolution of a corner, it can be
seen as a smooth curve at a zoom-in view.

2.1.1 Commonly Asked Questions

When we detect corners, we consider intensity of images. I think that color
or other information of images should be also important. How can we con-
sider them? The Harris corner detector looks at gradients of intensity
of images. We can naively apply the same concept (gradients) to
colors of images. However, there is a better way of considering colors
or other information of images.

Why do we consider the auto-correlation equation, when we detect corners?
We would like to detect key points that are robust to many different
configurations for image matching. Since we would like to extract
key points independently in each image, we look at the autocorre-
lation function. For the case of corners, the autocorrelation function
can have big changes, when we have small shifts in a local window.
In order to look at those changes in all the possible directions in an
efficient manner, we apply the Taylor expansion with two orthogonal
directions.

2.2 Scale-Invariant Region Detection
By looking at a region around a key-
point and aggregating the information
from the region, we can construct a
useful image descriptor.

It is important to find features that are also invariant to scales. Ad-
ditionally, a feature point itself does not provide ample information
for defining a robust descriptor, which serves as a representation
for image search or related applications. In general, by looking at
a region, say 7 by 7 image pixels, around the feature point, we can
collect useful information and construct robust features. To define
such regions, we also need to know a scale or window size around
the feature.

A naive approach for defining such a region in a scale invariant
manner is to compute features with different scales, and use all

22 image search

48

Figure 2.4: On the left, the same
image with two different resolutions
are shown. On the bottom, chosen
characteristic scales, scales that have
local maximum values according to
a function, f (·), are shown; in this
example, we use the average color
intensity within each image region for
the function. On the right, we remap
those computed regions with the scales
into a canonical image patch. The
picture is excerpted from slides of
Tyutelaars.

of them for later operations such as matching. Unfortunately, this
approach is prohibitively expensive in terms of computation and
memory requirement, especially for large-scale image databases.

To address this problem, many efforts have been put into. A
general solution to this is to identify a characteristic scale of image
regions by searching a local maximum in the scale space of the
image 2. At a high level, we build a series of lower resolutions of 2 Tony Lindeberg. Feature detection with

automatic scale selection. International
Journal of Computer Vision, 30(2):79–116,
1998

an input image as the scale space of the image. The X and Y spaces
as well as the scale space of the image defines the 3D space of the
image. We then detect the local maximum in the 3D space of the
image including its scale space. The chosen scale of a pixel or its
image region with the local maximum in the 3D space is called
characteristic scale of the image region.

Note that as we used the local maximum values for detecting
corners in the Harris corner detection (Ch. 2.1), we also use such
pixels that have the local maximum values in the 3D space of the
image. Finally, we re-map the original region with the chosen scale
into a normalized path size (Fig. 2.4).

Convolution operation. For computing the scale-space of an input
image, we perform convolution operation to the input image. The
convolution operator is commonly used in many image processing.
Thanks to its wide usage in various application, the convolution
operator is also adopted in many deep learning architectures for
processing images and videos. Therefore, we explain its concept here,
before explaining the scale space of the image.

Given an image input f (x, y) where x and y indicates pixel indices
of the image, the convolution operation is defined as the following:

g(x, y) = w ∗ f (x, y) =
a

∑
dx=−a

b

∑
dy=−b

w(dx, dy) f (x + dx, y + dy), (2.9)

local image descriptors 23

Operation Filter Kernel w Filter Image

Identity

0 0 0
0 1 0
0 0 0

Edge detection

−1 −1 −1
−1 8 −1
−1 −1 −1

Approximated
Gaussian blur
(3 by 3)

1
16

1 2 1
2 4 2
1 2 1

Table 2.1: This table shows different
operations by changing the filter kernel
used in Eq. 2.9. This table is inspired by
wiki and credits to the images are given
to Michael Plotke.

where w(x, y) is filter kernel with 2a by 2b kernel size, and g(·, ·)
filtered image. By changing the filter kernel, we can implement
various image processing operations. Table 2.1 shows examples of
such operations.

Original

StDev = 3

StDev = 10
Figure 2.5: This shows two Gaussian
blurred images with different standard
deviation values to the original image.
Image credit to IkamusumeFan.

In our context for computing the scale space of the image, the
filter kernel is set with the Gaussian function like the one shown
in Table 2.1. When we perform the convolution operation with the
Gaussian function to an image, the filtered image looks blurry, as
shown in Fig. 2.5.

Scale-space. For various operations, we build a scale space of an
image for representing its multi-resolution structure. Given an image,
I, we construct its lower resolution, I(σ), which is computed by
performing the convolution operator with the Gaussian function with
a standard deviation, σ, as the filter weight to the input image I. By
using wider σ values, we can successively build a series of lower
resolutions of the image.

The Gaussian function is preferred to build the scale-space of the
image, since it does not create any additional structures from the fine
to the coarse scale. For example, a local minimum in a scale increases
its value in its coarser scale and may not be a local minimum in
that space. On the other hand, other points cannot become a local
minimum in its coarser space.

Signature function for the scale. We need to use a function for
identifying the characteristic scale in the scale-space of an image.
Interestingly, neurophysical studies point out that visual response

24 image search

Figure 2.6: To compute the characteris-
tic scale, we compute the scale-space of
an image and then find the local max-
ima in the 3D scale-space consisting of
the 2D image and the 1D scale spaces.
This figure is excerpted from slides of
Mikolajczyk.

Figure 2.7: Extracted blobs from
a sunflower image. We use codes
(Codes/blob_lapacian) available at
http://www.cs.utah.edu/~jfishbau/

advimproc/project1/. These codes are
also available in the book homepage,
https://sgvr.kaist.ac.kr/~sungeui/

search/.

of many mammalian retina and visual cortex can be described by
Gaussian derivatives. As a result, it is natural to consider Gaussian
functions and their derivatives to identify the characteristic scale
of an image. In particular, the Laplacian of Gaussian, also known
as a blob detector, has been used for the purpose and identified to
work well. The Laplacian of Gaussian can be denoted as Lxx(σ) +

Lyy(σ), where Lxx(σ) and Lyy(σ) indicate the second derivatives of
the Gaussian function along X and Y directions.

Many differential functions including Laplacian and Harris func-
tions have been tested for identifying the characteristic scale, but
Laplacian shows the best result in an independent work 3 in terms of 3 K. Mikolajczyk and C. Schmid. Index-

ing based on scale invariant interest
points. In the International Conference on
Computer Vision, pages 525–531 vol.1,
2001

correctly detecting characteristic scales in images.

Laplacian-of-Gaussian (LoG) and its fast approximation. To com-
pute the characteristic scale wit LoG, we first compute the scale-space
of the image with varying standard deviations for the Gaussian
function, and find the local maxima in the 3D space consisting of 2D
image space and the one dimensional scale space. A schematic view

http://www.cs.utah.edu/~jfishbau/advimproc/project1/
http://www.cs.utah.edu/~jfishbau/advimproc/project1/
https://sgvr.kaist.ac.kr/~sungeui/search/
https://sgvr.kaist.ac.kr/~sungeui/search/

local image descriptors 25

30

Approximating LoG
● Efficiently approximate LoG with a

Difference of Gaussian (DoG)

𝑳𝒐𝑮 ൌ 𝝈𝟐ሺ𝑳𝒙𝒙 𝒙, 𝒚, 𝝈 𝑳𝒚𝒚 𝒙, 𝒚, 𝝈 ሻ

𝑫𝒐𝑮 ൌ ሺ𝑮 𝒙, 𝒚, 𝒌𝝈 𝑮 𝒙, 𝒚, 𝝈 ሻ

Figure 2.8: Laplacian-of-Gaussian (LoG)
can be efficiently approximated by the
Difference-of-Gaussian (DoG). k is a
constant and when k =

√
2, there is not

much difference between two functions.
The figure is excerpted from slides of
Leibe.

of computing the scale with LoG is shown in Fig. 2.6. Fig. 2.7 shows
extracted blobs based on LoG that are local maxima of the 3D space
from an input image.

Computing LoG for an image takes non-negligible time by eval-
uating LoG from the image. Interestingly, Difference-of-Gaussian
(DoG), G(x, y, kσ) − G(x, y, σ), shows a similar shape to LoG, as
shown in Fig. 2.8. Since we need to compute the Gaussian filtered im-
ages for the scale-space, their difference can be computed efficiently.
Thanks to this benefit, DoG is adopted for the well-known SIFT fea-
ture extraction (Ch. 2.3). We therefore use DoG for computing the
characteristic scale instead of LoG.

Harris-Laplace. In Ch. 2.1, we discussed the Harris corner detection,
which is invariant to many transformation, but not for scales. By
adopting the characteristic scale in the Harris corner detector, we can
also design scale-invariant Harris corner detection, known as Harris-
Laplace 4, which uses LoG for computing the scale. Specifically, it 4 K. Mikolajczyk and C. Schmid. Index-

ing based on scale invariant interest
points. In the International Conference on
Computer Vision, pages 525–531 vol.1,
2001

computes corners, i.e., computes its response function, and perform
non-local suppression to compute local minima. We also compute the
local maxima in its 3D scale-space of the input image.

2.3 SIFT

So far, we talked about how to identify keypoints that are robust
under various changes including different scales of images. Once we
identify such keypoints, the next step is to represent the information
on the keypoint pixel and its neighboring pixels as the descriptor.
Again, this descriptor should be invariant under various changes.
Once we have such robust descriptors, we can then match well
between two descriptors that are extracted from the same point of
two different images.

To achieve the aforementioned goal of constructing robust de-
scriptors, many different techniques have been proposed. Among

26 image search

 Scale

 (first

 octave)

Scale

(next

octave)

Gaussian

Difference of

Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image isrepeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right.After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian,σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima ofσ2∇2G produce the most stable image features compared to a range ofother
possible image functions, such as the gradient, Hessian, orHarris corner function.

The relationship betweenD andσ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms ofσ rather than the more usualt = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales atkσ andσ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) −G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ) −G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates theσ2 scale normalization required for the scale-invariant

6

Figure 2.9: This figure illustrates how
SIFT efficiently computes a scale-space
of image by approximating LoG by
DoG, and gradually reduces image
resolutions. The figure is excerpted
from the paper of Lowe.

many manually created image features, SIFT (Scale Invariant Feature
Transform) is a seminal technique as a robust image feature for image
matching and search 5. Overall, SIFT uses DoG for detecting the 5 D.G. Lowe. Distinctive image features

from scale-invariant keypoints. IJCV, 60

(2):91–110, 2004

characteristic scale of features (Fig. 2.9).
Especially, as the scale-space representation, it uses a concept of

octave for creating a scale-space efficiently. Note that identifying
keypoints and computing descriptors should be performed efficiently,
since users expects performing image search to be done in a few
seconds. As shown in Fig. 2.9, we compute a scale-space of an input
image that are filtered by Gaussian in the first octave, and compute a
series of DoG by using two neighboring images in the scale space.

For the next octave, we can also do the same operation, but we
reduce down the image resolution for lowering down the compu-
tational overhead of the future operations. Note that the image has
smoothed out much and thus we can reduce down its resolution
without losing much information. We then continue the process.
This way we can accelerate the process of computing the scale space,
while constructing high-quality image descriptors.

Distinctive Image Features from Scale-Invariant Keypoints 95

Figure 1. For each octave of scale space, the initial image is repeatedly convolved with Gaussians to produce the set of scale space images
shown on the left. Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images on the right. After each octave, the
Gaussian image is down-sampled by a factor of 2, and the process repeated.

images in the stack of blurred images for each octave,
so that final extrema detection covers a complete oc-
tave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right.
Once a complete octave has been processed, we resam-
ple the Gaussian image that has twice the initial value
of σ (it will be 2 images from the top of the stack) by
taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than
for the start of the previous octave, while computation
is greatly reduced.

3.1. Local Extrema Detection

In order to detect the local maxima and minima of
D(x, y, σ), each sample point is compared to its eight
neighbors in the current image and nine neighbors in
the scale above and below (see Fig. 2). It is selected
only if it is larger than all of these neighbors or smaller
than all of them. The cost of this check is reasonably
low due to the fact that most sample points will be
eliminated following the first few checks.

An important issue is to determine the frequency
of sampling in the image and scale domains that is
needed to reliably detect the extrema. Unfortunately,
it turns out that there is no minimum spacing of sam-

Figure 2. Maxima and minima of the difference-of-Gaussian im-
ages are detected by comparing a pixel (marked with X) to its 26
neighbors in 3 × 3 regions at the current and adjacent scales (marked
with circles).

ples that will detect all extrema, as the extrema can be
arbitrarily close together. This can be seen by consid-
ering a white circle on a black background, which will
have a single scale space maximum where the circular
positive central region of the difference-of-Gaussian
function matches the size and location of the circle.
For a very elongated ellipse, there will be two max-
ima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for
some ellipse with intermediate elongation there will
be a transition from a single maximum to two, with
the maxima arbitrarily close to each other near the
transition.

Figure 2.10: This shows a local region in
the 3D space. We treat the center pixel
(marked as X) to be a keypoint, once
it has the local maximum value. The
figure is excerpted from the paper of
Lowe.

For identifying interest points, we look at 3 by 3 by 3 local win-
dow space in the scale space and find local maximum in that local
window space (Ch. 2.2). This process is also shown in Fig. 2.10.

Pixels with local maxima can include
edge responses. We thus need to filter
those edge cases.

Those key points can include edge responses, since DoG responses
to strong edges as well as blobs. For higher stability, we identify
such edge cases and remove them. To detect such strong edge cases,
we can use additional edge detector method, but can compute the

local image descriptors 27

Hessian matrix that has the second derivatives of the Gaussian
functions:

H = ∑
(x,y)∈P

[
Ixx Ixy

Ixy Iyy

]
, (2.10)

where Ixy is the second partial derivatives along x followed by y
directions. Note that the trace of the Hessian matrix is the Laplacian
operator, and the second moment matrix (Eq. 2.3) used for the Harris
correct detector is based on the first-order partial derivatives, while
we use the second-order partial derivatives here.

Inspired by the response function of the Harris corner detector
(Ch. 2.1), we consider its trace and determinant. In this case, we do
not need to compute exact eigenvalues, but rather the ratio between
them. Suppose that λ1 and λ2 are two eigenvalues of the Hessian
matrix, H, while λ1 ≥ λ2. Also, let r to be a ratio between them and
thus λ1 = rλ2, where r ≥ 1. We then have the following equation:

Tr(H)2

DetH
=

(λ1 + λ2)
2

λ1λ2
=

(r + 1)2

r
. (2.11)

This function has the minimum when r = 1, and increases as we
have a larger ratio between two eigenvalues. In practice, we reject
interest points whose ratio is bigger than 10. A patch containing the local maxima

may have an arbitrary orientation. We
thus normalize its orientation into a
canonical one.

Once we filter out strong edge cases, pixels with those left local
maxima are treated as keypoints. At each keypoint, we look at a local
window, say 8 by 8 pixels, in the image space. Our goal is to con-
struct a robust image descriptor from pixels in the local window, also
called image patch. As we designed a rotation-invariant keypoint, we
also design a rotation-invariant image descriptor. As the first step for
computing the rotation-invariant descriptor, we rotate the patch into
a canonical orientation based on the dominant gradient of the patch;
i.e., we rotation the patch such that its dominant gradient is aligned
into a canonical orientation such as 90°. This process is also called
orientation normalization. Gradients of images are more robust,

i.e., does not vary much, than RGB
values for various illumination changes.

For the normalized patch, we then divide them into 4 by 4 image
patch and compute a histogram of orientations with eight bins for
each sub-region. Note that the orientations are simply computed
by image difference operations, and those computed gradients are
much robust than using RGB values directly, especially for various
illumination changes. As a result, SIFT use the orientation as the
basic descriptor and use a histogram of orientations as a descriptor of
each image region.

The aforementioned setting (e.g., 4 by 4 image sub-patches) was
chosen to show the best result based on empirical tests (Fig. 2.11).
The dimensionality of SIFT then has 128 (= 4× 4× 8). In practice, we

28 image search

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computingthe gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computedfrom an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function withσ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although,of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of1 − d for each dimension, whered is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

Figure 2.11: The right shows image
gradients on a local image patch, which
are weighted by a Gaussian function
shown in the circle. By aggregating im-
age gradients on a 4 by 4 image patch
into a gradient histogram consisting of
8 bins shown on the left, we compute
a SIFT image descriptor. The image is
excerpted from the paper of Lowe.

get about two thousands of stable interest points for 500× 500 image
resolutions. This number of features is very important for identifying
objects with severe transformations (e.g., occlusions) on images.

2.3.1 Commonly Asked Questions

Why Laplacian-of-Gaussian (LoG) is better than the average intensity for
the automatic scale detection? LoG has been known to be an excellent
detector for blobs as well as edges. Also, many Gaussian kernels
have been known not to present any new information in coarser rep-
resentations. Human visual responses can be modeled as Gaussian
derivatives. Overall many studies suggest that LoG is one of the best
functions that robustly detect the characteristic scale. For example, if
an image has illumination change, the function of average intensity
may not find good characteristic scales for images that shows the
same object.

What are the differences between covariance and invariance? Invariant
features are ones that do not change even if there are illumination
changes and so on. On the other hand, covariant features increases
or decreases depending on other factors. We would like to design
invariant or at least covariant features for various types of image
retrieval.

How can we eliminate the edge responses from the LoG function used in
SIFT? We discussed how to detect edges and corners from the sec-
ond moment matrix constructed by the first derivatives. Since the
LoG function used the second derivatives, we compute Hessian ma-
trix and do a similar process on the matrix to identify edge responses,
as we did for the second moment matrix used for the Harris detector.

